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J. Phys. A :  Gen. Phys., Vol. 5. July 1972. Printed in Great Britain. 0 1972. 

Quantum mechanics and field theory on multiply connected 
and on homogeneous spaces 

J S DOWKER 
Department of Theoretical Physics, University of Manchester, Manchester 11, U K  

MS received 9 December 1971, in revised form 6 March 1972 

Abstract. The basic framework for discussing quantum mechanics on multiply connected 
spaces is presented using the covering space concept. The theorem of Laidlaw and DeWitt 
IS rederived and extended to the case of field theory. It is pointed out that chiral dynamics is 
similar to Skyrme’s nonlinear theory and forms another example of Finkelstein’s kink idea. 
The possible existence of ‘n geons’ is raised, and the fact that the pion manifold may be any 
one of the Clifford-Klein constant curvature space-forms, rather than just the whole three- 
sphere, is suggested, The related formalism for quantum mechanics on homogeneous spaces 
is given in general terms. 

1. Introduction 

Recently Laidlaw and DeWitt (1971) have discussed quantum mechanics on multiply 
connected spaces using the Feynman functional formulation. The propagator is given 
as the sum of ‘partial amplitudes’, each corresponding to a distinct homotopy class of 
Feynman paths. The coefficients in this sum are shown to be a unitary, one dimensional 
representation of the fundamental group of the space (see also Schulman 1971). In this 
paper we should like to give what we consider to be a neater presentation of this result, 
to extend it to the case of field theory and also to discuss the, in some ways related, 
problem of quantum mechanics on a homogeneous space. In previous papers (Dowker 
1970, 1971) we have considered quantum mechanics on a semisimple Lie group and we 
would like to extend our results in some way to the more general class of homogeneous 
spaces. 

2. Multiply connected spaces 

The most sensible way of dealing with a multiply connected space A is through its 
covering spaces, in particular its universal covering space d. Most textbooks on 
topology discuss this concept at some length and we shall only mention the works by 
Steenrod (1951), Whitehead (1966) and Wolf (1967) as being especially relevant. The 
textbook by Hu (1959) is also an important source of information. 

In essence, d is defined by a map J# -+ -2l = J#/r where r is a properly discon- 
tinuous, discrete group of isometries of 2, without fixed points. 2 is simply connected 
and the fundamental path group of A, lT 

In pictorial terms, J Z  is obtained from J# by identifying points equivalent under r. 
Since is discrete Jt and A# have the same dimension and are locally isometric if we 
assume, as we now do, that they are Riemannian spaces. 

is isomorphic to r. 

936 
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Let us denote a general point of A? by 4 and of A by q. The meaning of the quotient 
space A = A?/r is that each point q of A corresponds to the n different points 47 
of A? where y ranges over the n elements of r. (We write the effect of r on A? to the 
right, 4" -+ @J.) A? is thus divided into subsets of a finite number of points, or 'fibres', as 
these subsets are called, one fibre corresponding to one point of A. (In topological 
terminology J# is a bundle, that is, a fibred space, and is the group of the bundle. 
Together with the base space A and the mapping A? -+ A, r and A make up a fibre 
bundle (eg Steenrod 1951, $8 1.6, 1.7).) 

It is convenient to choose a fixed 'base' point go in each of the fibres. The set F 
of all these base points is clearly isomorphic to A and since evety point of J# can be 
represented in the form 

= qoy. (1) 
F ,  the complement of F in 2, is a so called fundamental domain in J# relative to 
(eg Gelfand et a1 1969, p 5). 

3. Quantum mechanics 

Since 2 is simply connected a wavefunction on it, $(@, will be single valued. We can 
now define (cf Finkelstein 1966) a multivalued wavefunction on A', $(q), by saying that 
$(q) has the values taken by $(goy) where qo corresponds to q and y ranges over all r. 
Choosing the particular correspondence q0 -+ q, that is y = 1, gives us a single valued 
function on A, $(q) = $(go). A further requirement is that $(q) should be continuous. 
We assume that $(g) is so. Thus, as q" tends to q' we must have that gg tends to gb, so 
that if one go is selected the whole set F will be determined. It is clear that there will be 
as many F as there are elements of r, each obtained from any other by a translation 
belonging to r. The corresponding wavefunctions will be the branches of our multi- 
valued wavefunction on A. 

For physical reasons we shall require that these branches be equivalent. This means 
that they have the same modulus, that is 

It is easy to show from (2) that a(?) must be a representation of r, that is 

4 7 1 ? 2 )  = ab2)abd (3) 
up to a constant phase. 

the propagators. Thus, on A?, we have 

&(ij", t") = 

In order to make contact with the work of Laidlaw and DeWitt we now introduce 

r?(ij"t"Iq't')$(q', t ' )  dq'. 

The integration over 2 is split up into an integration over an F and a sum over r. 
If (1) and (2) are used this yields 
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where we have dropped the time variable. It is now only necessary to use the iso- 
morphism of F and A and to replace 4: and go by their corresponding points, q” and 
q’, in A in order to obtain the propagation law on A 

We emphasize that here $(q) = I&&) is a single valued continuous function on A. 
Equation (5 ) ,  with equation (3), constitutes the result of Laidlaw and DeWitt pre- 

viously referred to. This is because I-II(~fl) 1 r and part of the paper of Laidlaw and 
DeWitt is essentially a proof of this known result of homotopy theory (eg Steenrod 
1951,g 14). 

For consistency we want equation ( 2 )  to be valid for all times, which means that it 
must be propagated by equation (4). For this it is necessary that r be an invariance 
group of the quantum system, which implies that 

R(qyq‘y) = R(q“l4”) 

R(r?“y/q) = R(q”1q’y- 1). (6) 

or equivalently 

Using this condition, equation (3) and the invariance of the sum over r under a constant 
translation by y it is easily shown that 

$(q;y, t )  = a(r)5(46 3 t )  
as required. 

quantum system under 
Since r is a group of isometries of 2 it will be sufficient for the invariance of the 

if the equation of motion, that is Schrodinger’s equation, on 
is covariant under coordinate transformations of 2, for example 

(7) i&G, t )  = -+A,$(,-, t )  

where a, is the Laplace-Beltrami operator on 
2, $(q) will satisfy the same Schrodinger equation as $(Q), namely 

Because ~2 is locally isometric to 

Equation (5’) can be interpreted in terms of images (cf Schulman 1971). The total 
amplitude in A is obtained by summing the (partial) amplitudes in 2 from each of 
the (pre-)images Toy’ of the initial point q’ to  a fixed image 4“‘; of the final point q”. Using 
(6) we can equivalently sum over images of the final point, for a fixed initial point 
image. 

4. Quotient and homogeneous spaces 

The space A = d / r  is a particular example of a quotient space and we can generalize 
the theory of the preceding section to the more general case ,A = . J / H  where H is a 
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continuous Lie group of isometries of 2. We need consider only the case where H 
consists of one connected part. (The more general case of several disconnected parts will 
follow from this special case and the theory of 8 3, the fundamental group of At’ being 
just the group of the disconnected parts of H . )  

The fibres which make up 2 are now continuous and A and 2 have different 
dimensions. A function on 4 can be considered to be a function on A? constant on 
these fibres, that is, there is a mapping 

&oh) = $(Qo) -+ +(4)  = bk?o) (9) 

where again Q,, is a base point in a typical fibre such that any point in A? can be 
represented by 

Q = q0h .  

The propagator on A is now obtained in exactly the same way as in 9 3 except that 
summation over I’ is replaced by integration over H. Omitting the steps we find 

K(q”1q’) = 1 I?l(QSlqoh) dh 
H 

which we can possibly think of in terms of continuous images. The knowledgeable 
reader will recognize this as similar to the discussion of Wigner (1954) in his interesting 
paper on multiple scattering. 

If the mapping (9) is to be propagated in time we again need that the dynamics 
should be invariant under H which means, for example, that the h in (10) can be switched 
from the last argument of I? to the first, where it becomes h-’.  This invariance will 
follow if and satisfy the Schrodinger equations (7) and (8) but where now A, is the 
restriction of A, to its action on functions satisfying (9). 

Formally, it would be possible to include a factor a(h) in (9), just as in (2), and then 
enquire as to its meaning. We just mention this possibility here and point out that if 
a(h) is to be a nontrivial representation of H this must be an abelian group and, further, 
+(q) will no longer satisfy equation (8). We should also like to draw attention to the fact 
that this modification bears some resemblance to the theory of induced representations 
(eg Mackey 1968, Vilenkin 1968, Gelfand et a1 1969). 

An especially important case is when 2 is the manifold of a Lie group, that is, when 
A’ is a homogeneous space A’ = G / H .  It may be that G is not simply connected. How- 
ever we can always introduce i ts universal covering space, if desired, and employ (10) 
and (5’)  in turn. There is, therefore, no loss in assuming G simply connected, and we can 
further assume that it is semisimple. Equation (S), if H = r is discrete, or equation (lo), 
if H is continuous, will determine the propagator on G / H  as an ‘image sum’ of propa- 
gators on a semisimple group. These we have already calculated (Dowker 1970, 1971) 
and have shown that the quasiclassical expression is exact up to a nonsignificant phase 
factor. Thus we can also say that the quasiclassical result is likewise exact.on G / H ,  
although if H is continuous this statement is not to be taken as literally true. For 
example, the propagator on a two dimensional sphere S2 is not given by the quasiclassical 
expression calculated on the basis of Sz kinematics but it is a (continuous) sum of 
quasiclassical propagators on SO(3). In the next section we discuss this standard 
example. 
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5. Example of SU(2) 

The case when G = SU(2), that is J# = S3 the three dimensional sphere, has been 
treated at length by Schulman (1968) (see also DeWitt 1969) and corresponds classically 
to the spherical top. We shall here rederive Schulman's result that the propagator on 
the quotient space 

allows a separation of integral and half integral spin. 

the SU(2) representation matrices &,,(q"), I = 1. 2.. . . by 
The propagator corresponding to the Schrodinger equation (7) is given in terms of 

I?(Tlg') = A19;,(q"")3;,(q) ( I  = 2j+ 1) 
I 

where the A,  are (known) coefficients depending on the time difference t" - 2 ' .  

the (largest) group of isometries of S3, SU(2) 0 SU(2). 

(1, - 1) and hence, from (57 ,  two propagators on S0(3), K ,  , K - given by 

l? is a function of 4''q'- only as it should be from the invariance of the theory under 

There are two unitary, one dimensional representations of Z,, namely (1, 1 )  and 

(12) K*(q"lq') = R(qglqo) i K(qgi-4;). 

9'(-q) = ( - l ) l+ lg l (g )  

If we substitute (1 1) into (12) and use 

we find 

K,(q"/q') = c 4 { 1  f ( -  l)')Q;,(q6)~;,(4b) 
I 

which shows that K ,  contains only odd I ,  that is integral spins, while K -  has only half 
integral spins, as discussed by Schulman (1968)t. 

= Z,. Indeed, 
Seifert and Threlfall (1930), in a piece of classical mathematics, determined all spaces 
locally isometric to S3 (with some reasonable restrictions such as completeness). There 
are, in fact, an infinite number of them. For example we can have S 3 / Z , ,  m > 2. We 
refer to Wolf (1967) for a modern treatment of this 'Clifford-Klein space-form problem'. 

I t  is important to remember that the only space-forms S3/r for which the largest 
group ofisometries is SU(2) 0 SU(2) are S3 itself and P3. In general the largest, complete 
group of isometries of &'I- is smaller than that of J# although this latter still exists as a 
local group of isometries of J#/r. 

Exactly what physics, if any, is to be attached to these spherical space-forms we do 
not know and we simply indicate their existence at  this point. 

A similar comment is valid for the construction of propagators corresponding to a 
different choice for G. For example we might make G SU(3) and calculate the propagator 
on SU(3)/Z,, Z, being the centre of SU(3), by analogy with the SU(2) case, but the lack ofa 
relevant mechanical or physical system seems to make this, and the like, calculations 
somewhat academic. 
t This conclusion also follows directly from the expansion of $(a) in the B'(4). 

There seems to be no reason why we should restrict ourselves to 
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There is one scheme, however, for which these considerations may be significant. We 
refer to the theory of chiral dynamics. This is a field theory and so we now turn to the 
modifications necessary in such a case and come back to chiral theory later. 

6. Field theory 

Instead of q(t) we now have q(x, t). The formalism employed depends on whether we 
keep x with t or whether we treat x as a coordinate of q. In the latter case the appropriate 
place to discuss the dynamics is the functional space M whose points determine a func- 
tion q(x).  M will be the topological product of all the A spaces, one attached to each 
space point x 

M = nAx. 
X 

M takes on the aspect of a mapping space (eg Hu 1959, p 73), Ax, of the space X 
of x (here, three dimensional euclidean space) into A. There are further topological 
complications for such a space. It may consist of disconnected pieces, if a boundary 
condition on q(x, t )  is imposed at spatial infinity say, even if A is connected (by con- 
nected we mean path connected). A field distribution corresponding to a point in one of 
these pieces cannot develop into a field described by a point in a different part. Such 
fields would not be homotopic and the theory ‘admits kinks’, in the terminology of 
Finkelstein (1966) (see also Finkelstein and Rubinstein 1968, Finkelstein and Misner 
1959, Williams 1970, 1971). 

The group formed by the disconnected parts of M is the third homotopy group, 
n,(A), of A!. In the present work we are not so much interested in the question of kinks 
as in the propagator within one of the connected components M i  of M .  The formalism 
is exactly as in 9 2 (see also Finkelstein and Rubinstein 1968, 11). We introduce the 
universal covering space ai of M i  by 

where Ai is a discrete group of isometries of ai, being in fact the fundamental group of 
M i ,  n1(Mi). Homotopy theory (the above references give the details) shows that 

for all i . n4(At) is the fourth homotopy group of A. 

respectively, and write 
Just as before we introduce the state functionals qi[Q, t ] ,  Yi[q, t] ,  on ai and M i  

where qi[qO] is a single valued, continuous functional on the complement Fi of the 
fundamental domain Fi in ai with respect to Ai .  Thus Yi[q] = qi[qO6] defines the 
branches of the state functional on M i ,  and again we require ai to have unit modulus. 

The functional propagator on the connected component M i  of M is 

6’ 

where ai(S) is a unitary, one dimensional representation of I14(A). This is the field- 
theoretic generalization of the result of Laidlaw and DeWitt (1971). It is, in fact, just 
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what one would have expected from the Feynman formulation. In field theory the 
‘paths’ become (n  + 1) dimensional manifolds, if n is the dimension of the space X .  
The group that catalogues the homotopy classes of such manifolds is n,, 

An important theorem (eg Steenrod 1951, 9 17.6, Hu 1959, proposition 7.1) states 
that n,(A) is isomorphic to I-I,,(,#’) if n is greater than two. Thus, for field theory, the 
number of distinct functional propagators for A! is the same as that for its universal 
covering space 2 in sharp contrast to the situation in the quantum theory of discrete 
systems discussed in 13 3 .  

7. A possible application: chiral dynamics 

In chiral SU(2) theory the manifold of the pion field variables @(x, t )  is taken to be the 
group manifold of SU(2), that is S3, (see eg Meetz 1969, Isham 1969). Accordingly. the 
general theory of the preceding section is applicable and it will be of interest to pursue 
its consequences a little further for this case of physical interest. There do not seem to be 
many systems of real physical import whose configuration spaces are topologically 
interesting. 

The general formalism for A?,? = S3 has, in fact, been discussed by Finkelstein (1966) 
and by Williams (1970, 1971) and the main object of the present section is to point out 
its relevance for chiral dynamics. Up to the present this has not been recognized. 
Unfortunately any dynamical calculations are rather formidable and we cannot present 
any concrete conclusions at the present time. However we do wish to make two distinct 
points of qualitative, but ultimately of quantitative, significance. 

The first point concerns the actual manifold of the pion variables. Do we need to 
take this to be either S3 or, possibly, P3 (as discussed by Isham 1969)? Up to now 
most, if not all, chiral theory calculations use a perturbation approach in order to 
extract physical quantities such as the pion-pion scattering amplitudes. The pion 
field is expanded about the value zero and so only local properties of the pion manifold 
are encountered. Thus, so far as present day tests of the theory go, ,bit could be any 
of the space-forms S3/r, locally isometric to S3, mentioned in 0 5t .  We would like to 
raise, but not to answer, the question whether these could be distinguished experi- 
mentally. Roughly speaking, the pion field might become so large that the topological 
properties of 4 become important. It seems unlikely that we could test this directly. 
If we crudely extrapolate the Yukawa potential down to small distances just to get a 
rough idea, the pion field attains a size comparable with the circumference (about 2.8 fm) 
of S3 at about 0.1 fm. Which is somewhat small. 

The second, and potentially more important, point arises when we come to consider 
the pion field functional propagator, which will be given by equation (13), according to 
the general theory of 0 6. 

Since n,(S3) = Z, there will be two sorts of propagator exactly as in $5. In the 
quantum mechanical case we seized on this circumstance as providing evidence for a 
classical theory leading to quantum half-odd spins. Is there a correspondingly physical 
conclusion for fields? We might predict the existence of some quantized semilocal 
structure of the pion field with half-odd isotopic spin (the nucleon?). We could term 
this object a ‘ x  geon’ (see Finkelstein and Misner 1959). It need not be emphasized that 
these considerations are highly speculative. 

t See also Mickelsson and Niederle (1970). 
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A curious circumstance arises if we try to extend these ideas to chiral SU(3), that is, 
if we include the K and rl mesons as fundamental coordinates along with the pions. 
For, while ll,(SU(3)) = Z showing the existence of kinks, ll,(SU(3)) is trivial and the 
theory does not admit the SU(3) analogue of half-odd spin. This situation has been 
analysed further and the results are contained in our paper ‘Are Quarks Possible?’, 
submitted for publication. For this reason no more will be said here. 

Finally we should like to mention the investigations of Skyrme (eg Skyrme 1958, 
1959, 1961) into a nonlinear field theory which bears, in some points, a remarkable 
resemblance to chiral theory and which forms an early example of kink theory. Skyrme’s 
analysis is important because he is principally concerned with dynamical calculations. 
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